Roll No. Total No. of Pages: 02 Total No. of Questions: 08 M.Tech. (EE) (2018 & Onwards) (Sem.-1) POWER SYSTEM DYNAMICS-I Subject Code: MTEE-102-18 M.Code: 75216 Time: 3 Hrs. Max. Marks: 60 **INSTRUCTIONS TO CANDIDATES:** Attempt any FIVE questions out of EIGHT questions. Each question carries TWELVE marks. Q1. a) Explain the angular stability problem of a synchronous machine system. [6] b) Define per unit system. Write procedure for using per unit system. [6] Q2. a) Give detailed description of steady state stability evaluation of SMIB System. [6] b) A generator is connected to an infinite bus through an external impedance of iXe. If Eb = Vto = 1.0 p.u. Find the initial conditions. Assume xe = 0.28 p.u. Consider the generator data : xd = 1.8, xq = 1.7, x'd = 0.18, x'q = 0.25, Ra = 10.0 **Sec.** Tq'' = 0.1 Sec., H = 5 Sec., and $T_B = 50$ Hz. Q3. a) Express the role of Cark's transformation for equations of synchronous machine. [5] b) Obtain Flux mkage and Voltage equations of a synchronous machine model used in power system dynamic studies. [7] Q4. a) Write assumptions used in derivation of basic equations for a synchronous machine. [5] b) Draw two equivalent circuits of synchronous machine corresponding to the two axes d and q. [7] Q5. a) Explain the methods of excitation control used for an alternator. [6] b) Obtain the small signal modelling of a single machine system. [6] Q6. Express complete block diagram for developing simplified model of synchronous machine. [12]

(S35)-151

1 M-75216

Q7.	a) Draw the block diagram of PSS.	[5]
	b) Obtain the simplified model of a single machine connected to infinite bus.	[7]
Q8.	Write short notes on following:	
	a) Small signal frequency model	[4]
	b) Philips-Heffron model	[4]
	c) Prime mover controller.	[4]

2 | M-75216 (S35)-151